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INTRODUCTION 

Random space filling problems have been discussed in the literature 

in recent years, (for example [l], [3], [^], [5], and [7]).  This is 

an interesting and usually difficult problem in geometrical probability 

which in some cases is motivated by specific problems in physical 

chemistry, biology, and other disciplines.  Usually one is concerned 

with completely covering a fixed region by random regions.  However, 

the specific method by which the random regions are placed is of central 

importance in the resolution of such problems.  Because of the complexity 

in considering this in any general fashion, an investigator usually 

chooses special cases to examine.  In this paper we consider some 

situations considered previously by other authors, expand on their 

analyses, and initiate some new areas-for which some solution is found. 

In section 1 of this paper, it is shown that the moments of the 

random variable "proportion of the fixed region covered by random 

regions" form a monotone decreasing sequence that converges to the 

probability of coverage.  This is shown to hold in great generality 

and exhibits a link between the method of Robbins [5] for calculating 

these moments and the random space filling problem. 

In Section 2, formulas are developed for the moments of the propor- 

tion of a set that is covered by N independent and identically distributed 

sets.  In Section 3, this is specialized to a particular case of 

coverage of a circle by random arcs of random size. 

Numerical results are reported in Section k  for probabilities of 

coverage of the circle by N uniformly placed random arcs of random sizes. 

Five arc length distributions are considered and treated by Monte Carlo 



and exact methods. 

The ordering of coverage probability by decreasing peakedness of arc 

length distribution, holding expectation constant, is explored in Section 

5.  This conjectured ordering is suggested by the results of Section 4 

and is shown to hold for a large class of arc length distributions for 

which exact calculations are feasible. 



1.   CONVERGENCE OF THE MOMENTS  E Ak TO PROBABILITY OF COVERAGE 

Theorem 1 is presented here in full mathematical generality. 

For ordinary applications, the reader may wish to think of ^ as a 

Euclidean space and u  as Lebesque measure on JC .     It is in this 

context that we apply the theorem in subsequent sections.  However^ 

the full generality is presented here because the theorem was 

developed that way.  The proof of theorem 1 is essentially the same 

in each context. 

Let  t^£,^3 V ) be a measure space.  That is, (^  is a cr-algebra of 

subsets of %    and u is a countably additive set function mapping Qp to 

[0,°°].  Let X be a random measurable subset of ^ such that its measure 

u(x)  is a random variable.  Let K be a fixed measurable subset of 7T 

with 0 < u(K) < «> . Define A = y(XO K)/U(K) , the proportion of K 

that is covered by X .  Note that this framework includes the coverage 

problem because X may be, for example, the union of N independent and 

identically distributed regions.  To avoid measurability problems, we 

assume u(XDK)  is a random variable.  The event "X covers K" is defined 

to mean u(XOK) = U(K) ,  that is, if X covers K up to a set of 

measure zero.  The main result linking the moments of A to the probabil- 

ity that  X  cover n     K.    is 

Theorem 1:  Each moment  E A   (m = 1,2,3,...)  is an upper bound on the 

probability that X covers K .  The sequence of moments is- monotone 

decreasing, 

EA>EA2>EA3>   •••   , 



and converges to the probability that  X covers  K : 

lim E Am -> P(X covers K) . 

Moreover, this sequence is strictly decreasing except in the trivial 

case  P(0<A<1) = 0 .  Thus the probability of coverage is determined 

in a very 3inrple way from the moments of the Proportion of K covered. 

Proof of Theorem 1:   Observe that A  is a random variable and thus a 

measurable function from some probability space  (fi,^,P)  to the interval 

[U,l]  and that P(A=l) = P(X covers K).  0 <_ A £ 1  implies A• > Am+1;  hence 

m     m+1 
E A > E A    and the sequence of moments is monotone decreasing. Hext 

observe that for eacb_ (JJ e. fi ,     lim Am(w) = I    (w) where i^"1^ 

is the indicator function of the set {a): ACW)=1} . Moreover, 

IA (to) I <_ 1 .  Thus by the Lebesgue dominated convergence theorem, 

AmOo)dP(.u) = lim E A = lim 
tt 

I^A l)(u)dP(u) = P(A=1) • 

Finally, if P(0 <A<l) f  0 then P(Am > Am+1) > 0 and E A• > E Am+1 

for each positive integer m . • 

As an example to show that measure-theoretic problems can arise, an 

example is now given in which  y(x f%  K)  is not measurable, and hence is not 

a random variable. 

Let Ik   •-  R,  the real numbers,  let K = [0,l],  and let u be 

Lebesgue measure on jb .  Let  E be a nonmeasurable subset of  [0,l]. 



For a construction of E  see Royden [6]  p. 63.  The random set X  is 

defined in terms of a random point CO  selected from  [0,l]  with uniform 

measure.  We set 

X=< 
[0,1]    if    co e E 

[1,2]     if    to i E 

It is clear that the value of X will always he a measurable subset 

of ^c, and that u(x) is identically 1 so that u(x) is a (degenerate) 

random variable.  However,  y(X^\K)  is not measurable because 

/ 

1 if co e E 
UCXAK) = / 

0 if to £ E 

is the indicator function of the nonmeasurable set  E.  This is presented 

here to highlight the measurability aspect referred to earlier and naturally 

this situation is not expected to occur in applications. 



2.   FORMULAS FOR THE MOMENTS IN THE CASE OF  M  I.I.D. SETS 

Using the method of Robbins [5] the moments of A = u(XCSK)/U(K), 

where K is a fixed set and X  a random set in R ,  u  is Lebesgue 

measure, and  0 < U(K) < °°,  are given by 

(2.1)       E Am = IyÜOrm f P^.-.-^eX) dx1---
dx

m • 

To avoid measured-theoretic pathologies, we assume all random quantities 

we write are random variables.  This will be guaranteed, for example» 

if we work in the framework, of coverage spaces. A £©ver**ge space f 

defined by Ailam in [i], is a triple ($, (Q , M) formed by two probability 

spaces (Si  =   (%,   S, P)  and $ = (fU,  T, Q)  together with a measurable 

set Mc 3£ x ^y   in their product probability space.  A random 

measurable subset M  of ^ is determined by a random point 

y £ *U   via the set M by taking M = {x z%:   (x,y) £ M}. £? is called 

the coverable space, and <$  is called the space of experiments.  A concrete 

illustration that is instructive in viewing this concept of a coverage space 

is given in the next section. 

The integrand P(x  x £ X)  is difficult to evaluate for general X. 

N 
However, in the case X = U   X.  where X ,...,X  are independently 

and identically distributed sets, the integrand may be expressed in terms 

of x,,...,x  and Xn  alone as follows. .1     m       1 



The or era 2: 

m    , • 

(2.2)  P(x. x eX) = 1 + H-1)      I [P(x ,...,*  £X )] 
1     m k=l     KJ,<---<j <m   °1     dk ^iir^iJfc. 
,N where X = U. , X. , and X., ,.. . ,XW are independent and identically 
i—1 i      l     JM 

distributed random sets. 

From this we immediately obtain a useful formula for the moments. 

Corollary: 

m 
(2.3)  EAm= 1 + I  C-l)kO Cy(K)]'k 

k=l      k  • 

N 

K* 

[P(x1,...,xk?;X1)] dx^.-dXk 

th 
Thu. to find the m  moment of A , we need only calculate 

N 

K* 
[T,U1,...yx^4.X1U     dx1...dxk. 

m 
for k = l,2,...,m . Moreover, after finding E A  In this fashion, 

we can calculate E A    by doing just one more Integral, namely 

II 

J? .+1 
[PCX., ,. .. yX       §?X )]  dxn...dx 1    m+±  1     1    ] m+1 

Proof of Theorem 2:  Let I  denote the indicator function of the set 

Y and let  Y  denote the complement of Y .  Then 

P(x1,...,xm £ X) = E Ix(x1) ... Ix(xm) .  Since X = uj  X. 9 we have 
N 

I (x ) = 1 - n I  (x ) . Thus 
0       1=1 X  J 

1 

£ V-Xn 5 ... , X  £ A I  — E 
±     m 

m I N        \ 
n i- n i (x.) 
3=1 I   i=i x? J I 



Expanding the first product, we get 

E 
m    , JN r -i 

i+ I  (-1)     I     n i U > .,. i c(x. ) 
k=i   ifj^'-^j^ i=i L x. Ji    xi ^kj 

Taking expectation inside a finite sum and using independences we get 

m 
1 + I  (-1)J 

k=l 
n E 

l<j1<«**<jk<m i=l 
E ^(x. ) ... I Cx ) 
X?  Jl      X?  Jk j 
1 1    -> 

Theorem 2 now follows from the fact that each X. has the same distribu- 

tion as X  and that 

El  (x. ) 
ll 
X? h 

.   I  (JC. ) = P(x.  ^ §!X, 5 
x: dk V i 



3.   SPECIAL CASE:  ARCS OF RANDOM SIZES OH A CIRCLE 

The circle has held a fascination for a number of authors in 

connection with either covering the circumference with random arcs, or 

covering a region with random circles.  There is an interesting 

connection between the two problems which Is explored here. 

Let K denote the unit circle. Let N arcs 1  ,...i~X~.    "be 

placed on K , with. X. centered at C. radians., and of length. L. . 

We assume C .,...,CL. ,  L ,... ,L,_ are Independent random variables, 

with, each C. uniformly distributed on {0,2IT) and each. L. distrib- 
X x. 

uted with a density h on IO,00) .• Let A denote the proportion of 

K covered by H - TJ. , 1. . We wish, to find the moments of A s and 
1=1  x 

hence P  (X covers K.) . 

This problem is motivated by the problem of covering a plane region 

with random unit discs.  Observe that if the region is covered, then 

each disc whose closure is interior to the region must have its boundary 

covered by other discs.  Let K denote a fixed unit circle»  Place K 

unit discs with centers uniformly distributed over the disc of radius- 

2 concentric with K .  Note each, disc determines- a random arc of over- 

lap on K (see Figure 3.1).  It can be seen that these arcs have the 

distribution mentioned in the first paragraph, with. h.OU = g- sin I ~LrQ  ^lC&l. 

The probability that the N discs cover K Is P(A=l} . 

We may place this problem within the framework of coverage spaces 

as follows.  Let *U    be the surface of the unit sphere in 3 dimensions 

parametrized by latitude and longitude so that 

<%j  = {(e,(j>):  9 e [0,TT], <f> e [0,2TT)}.  Let M = {(x,6,<j>) e K xj: 

x e [c|>,e+cj)] mod 2TT}.  Then, as outlined in section 2, a point 



Figure 3.1 

Each random circle C.  determines a random arc X.  on the fixed circle K. 

10 



(6,(j)) e   <Ä  determines a subset M/Q A\€I K.  In this case, M/Q ,\ 

is the arc starting at <j) and extending counterclockwise with 

length 0.  If we place uniform measure on H,     a straightforward 

calculation shows that the resulting distribution of arc length is 

ho.  Figure 3.2 may help one visualize the situation. 

First we calculate the moments for arbitrary density h_{Jll . We 

will use Formula (2.3) as 

(3.1) 

where 

m 
E Am = 1 + I   (-1)* © C2*r* b, 

k=l 

(3.2) 
\ = 

K* 

\_ i IX-, 5 . . . 3 X. 5* A_ / J   &X • • • CLKL  . 

Note that the integrand above is invariant under permutations of 

(x ,..'. ,x. ) and that 

N- 

^ 
-1 

lPGx1,...,xIs.jfeX1lJ dx1...dxk_1 

is, independent of the value of    XL     by uniformity of    C,    .     Thus we 

may set    x^ = 0    and integrate over the. ordered variables 

(3.3)    bk =   (2TT)ÜC-1)! 
H 

0<xn <«*«<x,      <2ir 
[P(x19... 5X^.^,0 ^XX)J    dx^.-aXj^ 

Next, transform to    OL   = x.   ,    ou = ^-p"^ »• • • »^ 1   = ^Sr-i   " ^ p ' 

rk-1 
^k = 27T " Xk-1 = 2lT ~ ?i-l ai  •     IIot e that 

11 



Figure 3.2 

»"- X 

Space of Experiments 

(surface of sphere) 

K 

Coverable Space 

(circumference of circle) 

The random point {9,4)  e-V    determines the random arc 

M. K. 

12 



(3.h)       P(x ,. . . ,x, , ,0 £X ) = £ P(X is between 0 and a.) , 
i=l 

again because X  has uniformly distributed center»  The Jacobian of 

the transformation  (x 9. . . 5x -,)"*" (&•-> »• • • »OL 1 )  is 1 so (3.3) 

becomes 

(3.5) bfc = (2ir)(k-l)! I   £ P(X between 0 and a.)  dra-.^da, , 
JR Li-1 J " 

where R = I (a, ,. .. ,OL ,): all a. >, 0 and £ ~ a. <_ 2TT I and 

rk—1 
a,   = 2TT - £._,   a.   •    Next we calculate    P(X    between 0 and a)    for 

0 < a < 2TT  . 

(3.6)     P(X    between 0 and a)  = E P(X    between 0 and aJL  )  = E 2rr 

where (s)+. = max(g,Q) . L  has density- h , and we integrate by- 

parts: to obtain 

(3.7)  P(X between 0 and a) = —-• 
a 

(a-£.)h.U)d£ = ~~ 
ea 

H.U)d£ 

where H(£) = L h(t)dt is the cumulative distribution function of L 

Using (3.7) in (3-5) 

N 

(3.8)   bk = (2u)(k-l)! 
R 

i  k 

L  i=l ' 

a. 
l 

H(£)dJt da,... 
**k. 

For-completeness, we put   (3.8)  into   (3.1) to obtain 

(3.9)     E Am = 1+   f  (-l)kO(k-l)S(27T)"(k-l) 

k=l R 2TT  >_ L      i=l 

fa. 

HU)dfc 

N 

da,.. '^k-J 

13 



Now we  specialize to the case    h(£) 
o 

and 

^2—I[0,7r]U)     so t]mt 

HU) =   { 
Q 

1 - cos £ 
2 

1 

'a 
I   a - sm a 

H.U)d£ = i 
0    ° 1    a    x 

g    2-n ~ h 

0   <^ £   <^ IT 

£   >   TT 

a <^ IT 

a > IT 

These different forms on [0,TTJ  and  (ir,2IT]  complicate matters, hut 

difficulties may he overcome hy "breaking the region of integration R 

up into suhregions where some (at most one!) a.     is greater than IT , 

and where all a.  are smaller than ir . Using this and symmetry, 

considerations., (3.81 hecomea 

(3.10) h. = (2TT)(JC^I)! «k 2T-F+U7j2
(-Qti7'ainai1 

R nla^n-} 

N 
da. ... da,   _, 

1 k-1 

+   (J2TT1 Ck--1)! -I    (a.-sin a.) 
i=l 

N 
da....da.   .. 

1 k-1 

Rn{all a  £TT} 

Recall       £    a.   = 2TT  ,     so  (3.10)  simplifies tc 
i=l 

Ik 



(3.11) b.   =  (2TT)k! IT + U7 ~ W J2 
sin aj 

N 
da.,.. .da,   ., 1 k-1 

R n{a >TT> 

+  (2TT)U-1)I 
1 _1_ 
2 ~   ij-TT 

k "IN 
£    sina.J  da1..»dxx 

i=l 

Rn{all as < TT} 

For    k = 1   ,    we may use   (3.2)  directly to obtain 

(3.12) JX = 2TT • (£) 
•N 

For k = 2 , we use (3.1l) and the fact that a,  and ap = 2rr - a, 

cannot "both he less than TT to obtain 

tu = hn 

2ir -iN 

^sin^ir-a^ da. 

Change variables and simplify to obtain 

riT 

(3.13) b^ = UTT W Cai + sin ai} 
N 
da. 

This may easily be evaluated numerically for any particular N . 

The first two moments of A are thus (using (.3.1), (3.12) and 

(3.13)) 

3 N 
(3.1*0   E A = 1 - (f)  , 

2        3 N  1 
(3.15)  E A = 1 - 2«(f) + ~ 

TT 

[F~ TJ7 (a + sin a)J + sin a) da . 

15 



The third moment  is more of a challenge.     From  (.3.11) 

f2lT 

(3.l6)      b    = 12-rr 

2TT-<X 
1   .   al       1 IN 
IT + Ü7 " W (sin a2 ~ sinC^+ag)) da? da1 

+ hn 

fT 
1        1 
2" ~ TÜT (sin ai + sin a2 ~ sin(-a;i

+a2^ 

N 
da2 dax 

iT-a, 

For ease  of numerical  integration, we change variables  and combine 

integrals: 

(3.17)      b3 = HIT 

ct., 
3 .Ü.-i 
U ~ ^TT      HIT 

(sin QL    +-sin(a1^a2l) 
N 

5" - "57 (sin a
x 

+ sin a
2 

+ sin(a1-a2)) da? da.. 

From (3.1) 

(3.18) 3 3 3 1 
EA    = 1 - 2Fbl +"^2b2 ~~3 b3 

^      X llTT2      2 8TT-5      3 

2 3 
Some values of    b   ,    b   ,    b   ,     EA,     E A  ,     E A      and    variance   (A)    are 

2 
tabulated in Table 3.1.    Recall from theorem 1  that    E A,     E A  ,     and 

3 
E A       are upper  bounds   for   the prohabilttv of   coverage. 

16 



Table 3.1 

n 

1 1+.71 22.67 111.3 

2 3.53 13.25 52.1 

3 2.65 7.89 25.1+ 

1+ 1-99 It.78 12.9 

5 1.1+9 2.96 6.8 

6 1.12 1.86 3.7 

7 .81+ 1.19 2.1 

8 .63 .77 1.2 

9 M .51 .71 

10 .35 .31+ .1+3 

15 .081+ .052 .01+5 

20 

25 

.020 

.001+7 

.0092 

.0017 

.0060 

.00093 

E A E A E A3 Var  (A) 

.250 .071+ .026 .0118 

.1+38 .211 .111 .0193 

.578 .356 .232 .0218 

.681+ .1+88 .361 .0211 

.763 .600 .1+86 .0186 

.822 .691 .592 .015*+ 

.867 .763 .681 .0123 

.900 .819 • 75U .0096 

.925 .863 .811 .0073 

.9^1+ .896 .855 .0055 

.987 .975 .961+ .0011 

.9968 

.99925 
.9939 

.9985 

.991 .00022 

.9979   .Q000W+ 

17 



U.  COVERAGE PROBABILITIES FOR THE CIRCLE:  NUMERICAL RESULTS 

Consider again the problem of Section 3.  Let F denote the 

cumulative distribution function of the arc lengths, and let P(n,F) 

denote the probability that n random arcs,, with uniformly distributed 

centers, cover the unit circle.  In this section, numerical values for 

P(n,F) are calculated for five distributions on [0,ir] , which, like 

the sine distribution of Section 3, are symmetric about ir/2 . 

The distributions studied are as follows: 

(1) F  ,  concentrated at TT/2 . 

(2) F0 , with density —g-— IrQ _-i(&) . Recall that upper bounds on 

P(n,F?) were found in Section 3. 

(3) F  , the uniform distribution on [0,TT] . 

, I   lA 

(k) l(~) , 0££<TT/2 

Fk(SL) 
0  lA 

1 - Cffl ,      TT/2 < £ < 7T 

This was chosen as an intermediary between F  and F     . 

(5) F  , placing mass 1/2 at 0 and at IT . 

F  through F,. are graphed in Figure k.l. 

Exact values of P(n,F) were obtained for F..  and F,_ . Computer 

simulations gave estimates for F  , F  and F. . 

P(n,F ) is found using Stevens' formulam which states that the 

probability of covering a circle with n randomly placed arcs of fixed 

size  a  is 

[2-rr/a]    . . n-1 

j=0        J      ^ 

16 



H 

-=1- 

I 

19 



where [t] denotes the greatest integer contained in t . Thus 

CU.2)      PU^) = 1 - nil)11'1  + q)^)11-1  - ^)(^)n-1 , 

P(n,F )  is found "by conditioning on K , the random number of arcs of 

size IT actually placed, and using (4.1). Since K has the binomial 

distribution ^(n,~)    we have 

P(n,F.) = E PCn,Fs|K) = f  (?) 2"n(l - k^"1) . 
5 ^     k=l * d 

To simplify this,, note that 

I KJW-1 = 2t|)n i ke)(.i)k(f)n-k = ^(|)n, 
k=l  * k=0  K J  J      *     d 

using the formula for binomial expectation.  Thus 

(U.3) P(n,F5) = 1 - 2~
n -^(^)n  . 

Monte Carlo results were done on Stanford's IM 370/168 computer. 

For each distribution, 10,000 simulations were performed in which 

random arcs were placed sequentially until either the circle was 

covered or 50 arcs were placed.  The usual unbiased estimate for pro- 

bability of success in Bernoulli! trials was used.  Numerical values of 

P(n,F.)  are tabulated in Table 4.1 and graphed in Figure 4.2.  Note that 

the coverage probabilities vary considerably among our distributions, even 

holding number of arcs and expected arc length constant.  For example, 

with 6 arcs, probability of coverage ranges from .03 to .27; and with 10 

arcs it ranges from .34 to .62. 

20 



Table k.1.     Coverage probat) il it Les for n random arcs on the •-.* *li_X ',*>-t»Vtf* 0 

_n 

* t 
P(n,F2) P(n5F3) 

t                         t 
.P(n,Fu) P(n,F5) 

1 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0,00 
3 0.00 0.001 0.004 0.02 0.03 
h 0.00 0.01 0.02 0.06 0.09 
5 0.004 0.03 0.05 0.12 0.l8 
6 0.03 0.07 0.11 0.21 0.27 
7 0.07 0.13 0.18 0.29 0.37 
8 0.15 0.21 0.26 0.38 0.1+6 
9 0.2J+ 0.30 0.35 0.1+6 0.55 

10 0.3U 0.39 0.1+3 0.5^ 0.62 
11 0.1+3 0.1+7 0.52 0.6l 0.69 
12 0.53 0.56 0.59 0.68 0.75 
13 0.6l 0.63 0.66 0.73 0.79 
Ik 0.68 0.70 0.72 0.78 0.83 
15 0.7*+ 0.75 0.77 0.82 0.87 
16 0.79 0.80 0.81 0.86 0.89 
IT 0.83 0.8U 0.85 0.88 0.91 
18 0.87 O.87 0.88 0.91 0.93 
19 0.89 0.90 0.90 0.93 0.95 
20 0.92 0.92 0.92 0.9^ 0.96 
21 0.93 0.9^ 0.9^ 0.95 0.97 
22 0.95 0.95 0.95 0.96 0.97 
23 0.96 O.96 0.96 0.97 0.98 
2k 0.97 0.97 0.97 0.97 0.98 
25 0.97 0.98 0.98 0.98 0.99 

*  exact 
t  simulated 

21 
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5.  COVERAGE PROBABILITIES FOR THE CIRCLE AND PEAKEDNESS OF ARC LENGTH 

DISTRIBUTION 

The values in Table k.l  and Figure k.2  suggest that 

P(n,F ) <_ P(n,F ) <_ ••• _< P(n,F ) for each n . From Figure k.l we can 

see that the F.  are in order of decreasing peakedness at their common 
l 

expectation TT/2 . We say F is more peaked about a than G is 

about ß if Y ^ F and Z^G imply P( | Y-a| >_ t) < P( |Z-ß| >_ t) for 

every t > 0 . This definition of peakedness is due to Birnbaum [2], 

This suggests a conjecture, namely that among cumulative distribu- 

tion functions on [0,2TT] having fixed expectation e , the less peaked 

F is about e , the greater P(n,F) will be for each n . That'is, 

one achieves, greater probability of coverage if one chooses a distri- 

bution of arc length that is spread out rather than more concentrated 

near its expectation. 

So far the conjecture is supported by numerical evidence for five 

distributions, each with expectation TT/2 . Next we study a class of 

distributions that lends further support to the conjecture and enables 

us to prove that P(n,F ) < P(n,F ) . 

Let F    denote the distribution function of arc length L 
S 5 3. - ° 

where 

i L = {   probability 
0 1 - - 

a 

so that e = E L . For this class of distributions, P(n,F) may be 

calculated exactly as the following lemma shows. 
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Lemma: 

(5a)     PU,Fe>a) - 1 - Ci - '7f • lT] (-^("m-^ili-^. 
3   -L 

Proof:     Conditioning on    K ,    the number of arcs of size    a    placed, 

noting that    K ^(Q (n,~)   ,    and using Stevens'  result, we have 

P(n,F       )  = E P(n,F       |K) 

n i i   [2ir/a] . . ,    ,   , 

k=l j=0 J 

Separating off the j = 0 term and rearranging summations, we obtain 

P(„,Feia). i - d-ff + 
[f "ViiJd-t)-1 I (J)(J)[Sa-^)]kd-j)»* 

Observing that the inner sum is 

/ £(1 _ W 
[1 - §i]n E(X)  where  X ^# (n , 5- -ff- 

\     2rr 

and using the fact that X 'v» @(n,p)  implies E( . ) = p (.)  completes 

the proof. D 

We will be interested in subclasses of distributions with expecta- 

tion e that are totally ordered by peakedness at e . The following 

proposition exhibits some of these. 

Proposition:  Let e e (0,2tr) . Then the class J    = {F  : e<a<2e} 

is totally ordered by peakedness at e . That is, e < a < b < 2e 

implies F    is more peaked at e than is F , . 
e 5 cL e j D 

2i* 



Proof:  Let  Y ^ F    and Z a, F ^ where e < a < b < 2e . 
~ e3a e,b — 

picture will help one visualize the situation . 

F 

1 

1 

e 
b 
e_ 
a 

«Q 

.»ge» 

We must show P(.JY-e| _> t) <_P(|Z-e| _> t) for all t >^ 0 .  Consider 

three cases: 

i)  if t<_b-e, then P( | Y-e| >  t) <_ 1 = P( |z-e| >_ t), 

ii)  if b ~ e < t < e a then P(|Y-e| >t)=l-£-<l-f< PC|Z-e| > t), 
— a— b —      '       ' — 

iii)    if    t > e   ,    then    P(.|Y-e| _> t) = 0 = P(|z~e|  >_t). D 

Theorem 3:     For.each    n  ,     P(n,F   ,2 &)     is monotone increasing for 

a e  [Tr/2,Tr]   .     Thus the conjecture holds in  $  ,„  . 
TT/2 

f?°o£ of Theorem 3:     P(n,F   ,g &)     assumes different forms  depending upon 

whether    a e  [Tr/2,2ir/3]    or    a e  [2TT/3,TT]   .     The proof given here is for 

a e  [2TT/35TT]     and  is  analogous   (but more  complicated)  in the  other case. 

We may assume    n > 3  ,     for  if    n <  3    then    P(n,F   /0     )  = 0    when- 
— TT/2,a 

ever    a < IT  .     Using the lemma, 

(5.2) (n,F,„     )  = 1 -   (1 - -!L)n - IS- (f)»"1 + TLnXSzil (IL „ ! 
7T/<;,a 2a 2a   V 0n+l 2       a 

.) 

25 



for    a e  [2rr/3,Tr]   .     If we set    t = iT/2a  ,    we need only show that 

f(t) = i - d~t)n - ntc^-)11-1 + aia=ilt(2t - i) 

rl  3T is monotone decreasing for t £ [—, T-J . To see this, first observe 

that 

fit) = ntn-l)[C|)n"2 - Cl-t)n-2] ^0 

in this interval. Hence f'(t) is monotone increasing there. 
max 

= -pt(^.\  <  ii   '"serve I will now show that i  3, fs(t) = ff(f) < 0 . Ob 
t £ [j »  4] k    ~ 

that 

where we define 

;Cx) = (|)X + x - (|)x 

Observe g(2) = 0 , g(3) = - J- . For x > 3 , 

;» (x) = (|)Xlog |- + 1 - (|)Xlog |^1 - (|)3log § = -.37 < 0 

This  implies    f'(t)  < 0  ,    forcing    f(t)    to be monotone decreasing for 

t   £   [|,J]   . 

The proof for    a £ [Tr/2,2Tr/3]    uses 

P(n'FTT/25a
)  ~ 1 ~   {l-te]    "SrV +3T(2)(a"-l)  -7n-(3)(a-3) 

2  a 4 a 
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and starts by observing that the corresponding third derivative is 

always non-positive.  There is no trouble at the boundary a = 2ir/3 

because P(n,F /0  )  is continuous there. D 

7T/2,a 

P(n,F^ .g a) is plotted in Figures 5.1 and 5.2, clearly showing its 

monotone property.  In figure 5.2 we see an interesting slope dis- 

continuity at arc size IT. ' This is. due to the fact that two arcs of 

size less than TT cannot possibly cover the circle, whereas two arcs 

of size greater than IT can cover the circle with positive probability. 

Corollary:  P(n,F ) < P(n,F,_) whenever n >_ 3 . 

Proof:  Observe that F., = F ,0  ,_ and F,. = F ,_  '. Hence 
-—— 1   7172,7172      5   7r/2,Tr 

P(n,F ) <_P(n,Fc) follows immediately from Theorem 3 . Strict inequality 

when n >_ 3 follows from f"(t) > 0 for t e C~,^]    in the proof of 

Theorem 3 . ° 

Theorem U: Fix e e (0,TT) . Then P(.n,F  ) is monotone increasing 
G ja 

for    a e [iaax(esTr),2Tr]     for each    n. 

Proof of Theorem h:     a > TT   ,     so by the lemma. 

(5.3) P(n,Fp     J = 1 -  (l-f-)n - f- (l-^)11"1 
e.a a a dix 

Setting t = — , we need only show 

f(t) = 1 - (l-t)n - ntCl-^)11-1 
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is monotone decreasing for t e [^j-, min(-, 1)].  But 

f(t) = n ü-tr1- d-ip)11-1" < 0 

in that interval, completing the proof. 

Corollary:  Let — < e < IT.  Then the conjecture holds in the class 

of distributions 

{F   :  TT < a < 2e) e, a    —  — 

Proof:  This is an immediate consequence of theorem k  and the propo- 

sition of this section. 
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